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Abstract

The radiative transition for an atom moving inside a spherical box is

considered in the terms of electronic-field states. By using the hopping model,

an analytical expression is obtained for the transition probability. This

expression is compared with results obtained by numerical integration of the

time-dependent Schr6dinger equation.
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I. Introduction

When the energy of an electronic transition in an atom depends on its

distance to another atom or molecule, then a collisional radiative transition is

possible whose frequency is different from that of the free atom. Collisional

radiative transitions have been considered theoretically for both atom-atom [1-

5] and atom-molecule [6-11] systems. The absorption or emission of a photon in

a colliding system is conveniently described as a dynamical transition between

electronic-field states which are built from the field-free states by using the

rotating-wave approximation [7,12-14). The limitations of this approximation

and consequently the limitations of the description of collisional radiative
415

transitions in terms of electronic-field states have been analyzed.1

A situation similar to that of a collisional radiative transition exists in

the case of guest atom inside a solid matrix, so far as the levels of the guest

atom depend on its position r in the matrix. If the guest atom is moving, then

a photon Aw can be absorbed when the atom goes through a surface formed by

points with transition energy Ek-E 0 equal to the photon energy,

Ek(4) - E0() - % (

The Aw absorption can be considered as a transition between electronic-field
!4

states with the avoided crossing at the surface rW , in accordance with the

* theory of collisional radiative transitions. Assuming the host (matrix) atoms

to be fixed, one describes the dynamics of the system as the semiclassical

motion of the guest atom in a real three-dimensional space.

The thermal motion of an atom is of interest only for systems where the

ground state energy E (r) is not changing much inside some volume in the matrix.

. This is possible usually in a matrix containing relatively small guest atoms in

• ... . - . .. ,.,. . ........ . ..... .... ........ . :.. . , .. . . J..:.. , . * .. , ,,* , 1.,%'f:.: =
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substitutional sites. An interesting example of such a system is represented by

a xenon matrix containing Cl atoms which are obtained by photodissociation of

C12 or HC1 molecules [161. Since the Cl atom is smaller than a Xe atom, it has

some freedom of motion inside a Xe cage (16-17]. This is supported by an

experimental study of the radiative excitation of ionic states with electron

transfer from the Xe matrix to the Cl atom [16]. According to semiempirical

calculations performed by th? diatomics-in-ionic states method (18], the ground

state potential energy surface (PES) is almost flat inside a sphere with a

radius of -1 A and increises sharply at distances larger than 1.1-1.2 A from the

cage center [19]. This PES can be approximated by the simple model of a

spherical box with a rigid wall of infinite energy.

The study of the photoabsorption by an atom moving in such a spherical box

is the subject of this paper. A model of a spherical box may be a satisfactory

approximation to any system where an atom is located in a cage of high symetry.

The absorption of light by an atom in a spherical box is described here as a

transition between two electronic-field states. This transition is considered

both by using the Landau-Zener formula and by solving the time-dependent

semiclassical Schrodinger equation.

IH. Spherical Box Model

Let us consider an atom inside a spherical box with a radius R0. The

ground state potential energy VI is assumed to be zero inside the box and

infinity outside it. Consequently, the atom is moving freely inside the box

until it collides with the wall of the box. We shall consider only the thermal

motion of the atom, where collisions with the box wall are suggested to be

strong enough to change the direction and the velocity of the motion in a random

way. The atom can be excited by a photon to an excited electronic state V for
2
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which the PES is spherically symmetric. The excitation may involve also the

electrons of surrounding atoms, like in the case of a Cl atom in a Xe cage as

described above. The excited state PES is suggested to have the simple

parabolic form

V2 = V - (V- V 2 /R2 (2)
2 c c 0RR

where Vc and V0 are the energies in the box center (R 0) and at the edge of

the box (R - R0), respectively. The excitation to the state V2 is possible if

the photon energy lies within the limits of the potentials V0 and Vc ,

v0 < ~W < V c .(3)

The radiative coupling u between the ground and excited states is assumed to be

constant.

The radiative transition between two electronic states will be described

here in terms of the electronic-field PES W and W2 [7]. Taking into account

that the ground state field-free PES is zero (V1 - 0), one obtains

,2  (V2+w) 2 2-[(V W)2+4u2 (4)

The electronic-field PES have an avoided crossing at the spherical seam whose

radius, according to Eq. (2) is,

V -w 0" " (5)

c.O

, ' *,': Z.% ',':-:- '.: ".' '.: ' , " '. :'" ' "" ,"" ', " .,>. , ,: .. .,,:..,: . """' "-



The radiative transition is described now as an adiabatic motion along the

electronic-field PES W or W2 9 whereas the motion without radiative transition

is described as diabatic motion with a nonadiabatic transition between the

electronic-field PES in the region of the seam (5).

We shall assume the coupling terms to be small, so that the probability of

the radiative transition between two successive collisions of the atom with the

box wall is much smaller than unity. However, the coupling has to be strong

enough to meet the criterion of the rotating-wave approximation [15]. In the

present model this criterion is

2 VVc-Vol
2r J -V l< 3 (6)
uwR 0 (6

In the case of a Cl atom in a Xe cage (R0  1 1 A, V-V V 0.4eV, Aw a 3eV, v

100 m/s) the condition y - 3 is fulfilled for a relatively small lower boundary

of the coupling, u . a 2m10 "4 eV.

III. Transition Probability in the Landau-Zener Approximation

The probability of the radiative transition can be obtained by using the

trajecLory-hopping model [20-21J for the motion on electronic-field PES. In

this model the transition is considered as a hopping between states which takes

place when the trajectory crosses a seam, i.e., the crossing surface of the

diabatic PES. The probability of hopping is calculated usually within the

Landau-Zener approximation. In the present model the seam is a sphere with the

radius given in (5). The trajectory, which has a form of a straight line,

crosses the seam twice between two successive collisions with the box wall. The

a- Landau-Zener transition probability for one crossing is
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dV2

where d- is the component of the potential energy derivative normal to the seam

and v is the normal component of the velocity. Taking into account that P isn

assumed to be much smaller than unity, as well as the geometry of the seam

crossings (Fig. 1), one obtains the following expression for the transition

probability per one run between the box walls:

4fu2 coso s
= P0 < Ps(8)
8 dV2  [cos 2s-Cos

VidRI
5b

dV
where I-Hi is determined at the seam, is the angle of motion, and s is the

seam angle from the starting point (Fig. 1),

os M sin- (R s/RO0)  (9)

The transition probability per time unit is obtained as an average over the

angle p,

1 I

2 2
P f dP psinO/f d r sino (10)

0 0

where T is the time of one run for a fixed angle P.

T 2Rocoso/v .(1
0

-9
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Combining Eqs. (8), (10) and (11) and taking into account that p8 - 0 for 0 > 0s

and that u is constant, one obtains an analytical expression for the transition

probability:

P 4 2 sinpsln(sec s + tanOs) (12)

0Rs

The transition probability (12) does not depend on the atom velocity v. In the

case of the parabolic potential given by (2), the seam angle (9) is determined

from the equation

Rs Vc- A 13
sin$ s " -0R IVc-V--(13)

0 c 0

and the transition probability (12) becomes

2
= u G() , (14)

G(Os ) = 2wln(seco + tan) . (15)

According to the last expression, the transition probability per time unit does

not depend on the box radius R0 and is inversely proportional to the potential

difference V c-V Its dependence on the photon energy %w is expressed in a

universal way as a function of the seam angle [see 9q. (13)].

For small sinOs, when the photon energy is cloue to the transition energy

in the box center V , the transition probability is proportional to sine s or to

the square root of the difference V -%w:C

55 , , ,,,. . . ..,.. . .. . ,... i~~i . , i **i -i =i --



2 u ~2u2 (V-)

p a 2(VcVo) sin-(V =3/2(16)
C 0 A(V c-V0) 

3 2

As the photon energy approaches the lower limit of the potential VO, the

transition probability increases to infinity as the logarithm of the difference

%'-V0 ,

2 W-V0p ti (cVO ln(v. 0o)1 (17)

As will be shown later, this increase of P to infinity for Vw close to V is due
0

to the Landau-Zener approximation.

a.

IV. Transition Probability as the Solution of the Time-Dependent Schr6dinger

Equation

In the hopping model considered above, the transition takes place at the

seam only with a probability determined by the Landau-Zener formula. These two

assumptions are discarded within the framework of the "exact" semiclassical

approach where the transition probability is determined by solving the time-

dependent Schrodinger equation for the electronic states of an atom moving on

classical trajectories [23]. The exact semiclassical transition probabilities

may differ significantly from the Landau-Zener probabilities, as it was shown

for the case of radiative transitions in atom-molecule collisions (24].

If the transition probability is much smaller than unity, as assumed above,

* then the amplitude of the final state, c2, is determined by the integral [25)

c2(x) - - dt u exp[i dt' (V2-$) . (18)
0 A f- 2-% )'

|"f
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For molecular collisions the transition probability is equal to the square of

the amplitude c2 at infinity. In the box model we shall assume that a collision

with the box wall changes significantly the phase of the electronic states, and

consequently the transition probability can be presented as a sum of the

transition probabilites determined for separate free runs. This simplification

allows us to express the transition probability per time unit in a similar way

as in the Landau-Zener approximation [see Eq. (10)],

P- f' d Ic2(' )I 2 sino J do sin (9)
0 0

where r is the free run time interval (11). Substituting the expression for

the potential (2) into the integral (19), one obtains the coefficient c2 as a

function of the angle 8,

iuR0
c2(B) - - Q(B) , (20)

(2cosOQ(O) M Jo d& exp(is) , E - vt/R 0  (21)

where * is the phase,

f [Cos 2s IO 2
S- + 3cos( 12 (22)

-f R0(V 0) (23)

.. - - ., . ",. . .,,. ,-A- ' , - .
-
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I

Substituting Eq. (20) into (19), one obtains the transition probability as a

function of the seam angle 0s [see Eq. (13)],

2

F() - f 2 (24)

F f(s)  f f 2 dO IQ(0)1 2 sina (25)
0

The exact semiclassical expression (24) is similar to the Landau-Zener

expression (14) with the difference only in the dependence on the seam angle O.

In the case of the exact semiclassical approach, the function Ff which describes

the dependence on 8s includes one parameter, namely the unitless value (23),

whereas in the Landau-Zener case the corresponding function G does not include

any parameters at all.

V. Calculational Results

The results of the numerical calculation of the function Ff which

determines the exact semiclassical transition probability (24) are presented in

Fig. 2 for three values of the parameter f. According to these results, Ff does

" not depend on f within a wide range of seam angles 0s where it coincides with

the function G of the Landau-Zener probability (14). When s is large, Ff first

becomes a bit larger than the F function, but in the region close to 90* it

begins to decrease whereas G increases to infinity. The smaller the parameter f

is, the smaller is the angle 0s of the Ff maximum. The exact semiclassical

transition probabilites per time unit for three atom velocities are presented in

Fig. 3 together with the Landau-Zener probability.

.. . . - S w * .% .- . ". . , , , " . %
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The results of the calculation lead us to conclude that the transition

probability for an atom in a spherical box with the potential (2) is determined

by a simple analytical formula (14) within a wide interval of the seam angles

As, for example 0s < 70* for f - 75 and 0. < 80* for f - 1200. These intervals

of s cover 88% and 97% of the photon energy interval (3), respectively.

In order to describe analytically also the transition probabilities for )w

- close to the lower potential limit V0 (0 close to 90*), we suggest using Eq.
0

(24) with an analytical expression for the function P(s,f) which interpolates

the exact semiclassical functions Ff ( ) presented in Fig. 2. The function

which performs this interpolation in a satisfactory way was found to have the

form

l+sino s
P(Ost) = 2rln(coSsi~ 5 22 (26)

5cos5 S+a 11+ 0

where

3= 1.8 sin6 -0.8 sin 8 s  (27)

02 1.8 sin 7 2
s - 0.8 sin 36 , (28)

5

a - 0.85 L_ , a2 = 0.5 f120 (29)

The formula (26) coincides almost completely with the Landau-Zener function

" (15), except for a small region of s close to 900 where if follows roughly the

-. 'exact" Ff(P s ) functions. The differences between the interpolation function

*(26) and the Ff(0s) functions lie mostly in the limits of 20%.

We shall apply now the results of the spherical box exact semiclassical

calculation to the case mentioned above for a C1 atom in a Xe cage. According
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to the semiempirical treatment of this system [19), the low-energy absorption

peak can be described roughly as a transition in the spherical box with radius

R M 1.2 A and transition energies Vc M 3.95 eV and V0 a 3.54 eV. Substituting

these box parameters together with the 50 K average velocity of v = 150 m/s into

Eq. (23), one obtains f - 500, which gives approximately the absorption maximum

at s = 758 and the half-intensity width 55* < a < 87° . These values

correspond to fw - 3.58 eV and a line width of A(Aw) - 0.15 eV, which are close

to the experimental values Aw - 3.73 eV and 6(Aw) 0.16 eV [19).
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Figure Captions

Fig. 1. Spherical box model. R0 is the box radius, s the seam angle and B B2

the atom trajectory.

Fig. 2. The function G (14) of the Landau-Zener probability (13) and the

functions Ff (24) of the exact semiclassical probability (23). The Ffo

functions are denoted by values of the parameter f (22).

Fig. 3. Transition probability per time unit as a function of photon energy for

the following parameters of the model: box radius R - 1 A, the
0

difference of the potential values V c-V0 = 0.4 eV, coupling energy u

0.001 eV, and the atom velocities v a 50, 200 and 800 m/s (f - 1216,

304, 76). The transition probability obtained in the Landau-Zener

approximation is denoted by L.Z. The exact se-miclassical probabilites

are denoted by the velocity values.
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